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Abstract. In this paper, we explore tensor representations that can compactly
capture higher-order relationships between skeleton joints for 3D action recogni-
tion. We first define RBF kernels on 3D joint sequences, which are then linearized
to form kernel descriptors. The higher-order outer-products of these kernel de-
scriptors form our tensor representations. We present two different kernels for
action recognition, namely (i) a sequence compatibility kernel that captures the
spatio-temporal compatibility of joints in one sequence against those in the other,
and (ii) a dynamics compatibility kernel that explicitly models the action dynam-
ics of a sequence. Tensors formed from these kernels are then used to train an
SVM. We present experiments on several benchmark datasets and demonstrate
state of the art results, substantiating the effectiveness of our representations.
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1 Introduction

Human action recognition is a central problem in computer vision with potential im-
pact in surveillance, human-robot interaction, elderly assistance systems, and gaming,
to name a few. While there have been significant advancements in this area over the
past few years, action recognition in unconstrained settings still remains a challenge.
There have been research to simplify the problem from using RGB cameras to more
sophisticated sensors such as Microsoft Kinect that can localize human body-parts and
produce moving 3D skeletons [1]; these skeletons are then used for recognition. Unfor-
tunately, these skeletons are often noisy due to the difficulty in localizing body-parts,
self-occlusions, and sensor range errors; thus necessitating higher-order reasoning on
these 3D skeletons for action recognition.

There have been several approaches suggested in the recent past to improve recog-
nition performance of actions from such noisy skeletons. These approaches can be
mainly divided into two perspectives, namely (i) generative models that assume the
skeleton points are produced by a latent dynamic model [2] corrupted by noise and
(ii) discriminative approaches that generate compact representations of sequences on
which classifiers are trained [3]. Due to the huge configuration space of 3D actions and
the unavailability of sufficient training data, discriminative approaches have been the
trend in the recent years for this problem. In this line of research, the main idea has
been to compactly represent the spatio-temporal evolution of 3D skeletons, and later
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train classifiers on these representations to recognize the actions. Fortunately, there is a
definitive structure to motions of 3D joints relative to each other due to the connectivity
and length constraints of body-parts. Such constraints have been used to model actions;
examples include Lie Algebra [4], positive definite matrices [5, 6], using a torus man-
ifold [7], Hanklet representations [8], among several others. While modeling actions
with explicit manifold assumptions can be useful, it is computationally expensive.

In this paper, we present a novel methodology for action representation from 3D
skeleton points that avoids any manifold assumptions on the data representation, instead
captures the higher-order statistics of how the body-joints relate to each other in a given
action sequence. To this end, our scheme combines positive definite kernels and higher-
order tensors, with the goal to obtain rich and compact representations. Our scheme
benefits from using non-linear kernels such as radial basis functions (RBF) and it can
also capture higher-order data statistics and the complexity of action dynamics.

We present two such kernel-tensor representations for the task. Our first representa-
tion sequence compatibility kernel (SCK), captures the spatio-temporal compatibility of
body-joints between two sequences. To this end, we present an RBF kernel formulation
that jointly captures the spatial and temporal similarity of each body-pose (normalized
with respect to the hip position) in a sequence against those in another. We show that
tensors generated from third-order outer-products of the linearizations of these kernels
can be a simple yet powerful representation capturing higher-order co-occurrence statis-
tics of body-parts and yield high classification confidences.

Our second representation, termed dynamics compatibility kernel (DCK) aims at
representing spatio-temporal dynamics of each sequence explicitly. We present a novel
RBF kernel formulation that captures the similarity between a pair of body-poses in a
given sequence explicitly, and then compare it against such body-pose pairs in other
sequences. As it might appear, such spatio-temporal modeling could be expensive due
to the volumetric nature of space and time. However, we show that using an appropriate
kernel model can shrink the time-related variable in a small constant size representation
after kernel linearization. With this approach, we can model both spatial and temporal
variations in the form of co-occurrences which could otherwise have been prohibitive.

We further show through experiments that the above two representations in fact cap-
ture complementary statistics regarding the actions, and combining them leads to sig-
nificant benefits. We present experiments on three standard datasets for the task, namely
(i) UTKinect-Actions [9], (ii) Florence3D-Actions [10], and (iii) MSR-Action3D [11]
datasets and demonstrate state-of-the-art accuracy.

To summarize, the main contributions of this paper are (i) introduction of sequence
and the dynamics compatibility kernels for capturing spatio-temporal evolution of body-
joints for 3D skeleton based action sequences, (ii) derivations of linearization of these
kernels, and (iii) their tensor reformulations. We review the related literature next.

2 Related Work

The problem of skeleton based action recognition has received significant attention over
the past decades. Interested readers may refer to useful surveys [3] on the topic. In the
sequel, we will review some of the more recent related approaches to the problem.
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In this paper, we focus on action recognition datasets that represent a human body
as an articulated set of connected body-joints that evolve in time [12]. A temporal evo-
lution of the human skeleton is very informative for action recognition as shown by
Johansson in his seminal experiment involving the moving lights display [13]. At the
simplest level, the human body can be represented as a set of 3D points corresponding
to body-joints such as elbow, wrist, knee, ankle, etc. Action dynamics has been modeled
using the motion of such 3D points in [14, 15], using joint orientations with respect to a
reference axis [16] and even relative body-joint positions [17, 18]. In contrast, we focus
on representing these 3D body-joints by kernels whose linearization results in higher-
order tensors capturing complex statistics. Noteworthy are also parts-based approaches
that additionally consider the connected body segments [19, 20, 21, 4].

Our work also differs from previous works in the way it handles the temporal do-
main. 3D joint locations are modeled as temporal hierarchy of coefficients in [14]. Pair-
wise relative positions of joints were modeled in [17] and combined with a hierarchy of
Fourier coefficients to capture temporal evolution of actions. Moreover, this approach
uses multiple kernel learning to select discriminative joint combinations. In [18], the
relative joint positions and their temporal displacements are modeled with respect to
the initial frame. In [4], the displacements and angles between the body parts are rep-
resented as a collection of matrices belonging to the special Euclidean group SE(3).
Temporal domain is handled by the discrete time warping and Fourier temporal pyra-
mid matching on a sequence of such matrices. In contrast, we model temporal domain
with a single RBF kernel providing invariance to local temporal shifts and avoid expen-
sive techniques such as time warping and multiple-kernel learning.

Our scheme also differs from prior works such as kernel descriptors [22] that ag-
gregate orientations of gradients for recognition. Their approach exploits sums over the
product of at most two RBF kernels handling two cues e.g., gradient orientations and
spatial locations, which are later linearized by Kernel PCA and Nyström techniques.
Similarly, convolutional kernel networks [23] consider stacked layers of a variant of
kernel descriptors [22]. Kernel trick was utilized for action recognition in kernelized
covariances [24] which are obtained in Nyström-like process. A time series kernel
[25] between auto-correlation matrices is proposed to capture spatio-temporal auto-
correlations. In contrast, our scheme allows sums over several multiplicative and addi-
tive RBF kernels, thus, it allows handling multiple input cues to build a complex repre-
sentation. We show how to capture higher-order statistics by linearizing a polynomial
kernel and avoid evaluating costly kernels directly in contrast to kernel trick.

Third-order tensors have been found to be useful for several other vision tasks. For
example, in [26], spatio-temporal third-order tensors on videos is proposed for action
analysis, non-negative tensor factorization is used for image denoising in [27], tensor
textures are proposed for texture rendering in [28], and higher order tensors are used for
face recognition in [29]. A survey of multi-linear algebraic methods for tensor subspace
learning and applications is available in [30]. These applications use a single tensor,
while our goal is to use the tensors as data descriptors similar to [31, 32, 33, 34] for
image recognition tasks. However, in contrast to these similar methods, we explore the
possibility of using third-order representations for 3D action recognition, which poses
a different set of challenges.
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3 Preliminaries

In this section, we review our notations and the necessary background on shift-invariant
kernels and their linearizations, which will be useful for deriving kernels on 3D skele-
tons for action recognition.

3.1 Tensor Notations

Let V ∈ Rd1×d2×d3 denote a third-order tensor. Using Matlab style notation, we refer to
the p-th slice of this tensor as V :,:,p, which is a d1×d2 matrix. For a matrix V ∈ Rd1×d2

and a vector v ∈ Rd3 , the notation V = V ↑⊗v produces a tensor V ∈ Rd1×d2×d3

where the p-th slice of V is given by V vp, vp being the p-th dimension of v. Symmetric
third-order tensors of rank one are formed by the outer product of a vector v ∈ Rd in
modes two and three. That is, a rank-one V ∈ Rd×d×d is obtained from v as V =
(↑⊗3v, (vvT ) ↑⊗v). Concatenation of n tensors in mode k is denoted as [Vi]

⊕k

i∈In ,
where In is an index sequence 1, 2, ..., n. The Frobenius norm of tensor is given by
‖V‖F =

√∑
i,j,k V2

ijk, where Vijk represents the ijk-th element of V . Similarly, the

inner-product between two tensors X and Y is given by 〈X ,Y〉 =
∑
ijk XijkYijk.

3.2 Kernel Linearization

Let Gσ(u − ū) = exp(−‖u− ū‖22 /2σ2) denote a standard Gaussian RBF kernel
centered at ū and having a bandwidth σ. Kernel linearization refers to rewriting thisGσ
as an inner-product of two infinite-dimensional feature maps. To obtain these maps, we
use a fast approximation method based on probability product kernels [35]. Specifically,
we employ the inner product of d′-dimensional isotropic Gaussians given u, u′∈ Rd

′
.

The resulting approximation can be written as:

Gσ(u−ū)=

(
2

πσ2

)d′
2
∫

ζ∈Rd′

Gσ/
√
2(u−ζ)Gσ/√2(ū−ζ) dζ. (1)

Equation (1) is then approximated by replacing the integral with the sum over Z pivots
ζ1, ..., ζZ , thus writing a feature map φ as:

φ(u) =
[
Gσ/

√
2(u− ζ1), ..., Gσ/√2(u− ζZ)

]T
, (2)

and Gσ(u−ū) ≈
〈√

cφ(u),
√
cφ(ū)

〉
, (3)

where c represents a constant. We refer to (3) as the linearization of the RBF kernel.

4 Proposed Approach

In this section, we first formulate the problem of action recognition from 3D skeleton
sequences, which precedes an exposition of our two kernel formulations for describing
the actions, followed by their tensor reformulations through kernel linearization.
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Fig. 1: Figures 1a and 1b show how SCK works – kernel Gσ2 compares exhaustively e.g. hand-
related joint i for every frame in sequence A with every frame in sequence B. Kernel Gσ3 com-
pares exhaustively the frame indexes. Figure 1c shows this burden is avoided by linearization –
third-order statistics on feature maps φ(xis) and z(s) for joint i are captured in tensor X i and
whitened by EPN to obtain Vi which are concatenated over i=1, ..., J to represent a sequence.

4.1 Problem Formulation

Suppose we are given a set of 3D human pose skeleton sequences, each pose consist-
ing of J body-keypoints. Further, to simplify our notations, we assume each sequence
consists of N skeletons, one per frame1. Mathematically, we can define such a pose
sequence Π as:

Π =
{
xis ∈ R3, i ∈ IJ , s ∈ IN

}
. (4)

Further, let each such sequence Π be associated with one of K action class labels
` ∈ IK . Our goal is to use the skeleton sequence Π and generate an action descriptor
for this sequence that can be used in a classifier for recognizing the action class. In the
following, we will present two such action descriptors, namely (i) sequence compatibil-
ity kernel and (ii) dynamics compatibility kernel, which are formulated using the ideas
of kernel linearization and tensor algebra. We present both these kernel formulations
next.

4.2 Sequence Compatibility Kernel

As alluded to earlier, the main idea of this kernel is to measure the compatibility be-
tween two action sequences in terms of the similarity between their skeletons and their
temporal order. To this end, we assume each skeleton is centralized with respect to one
of the body-joints (say, hip). Suppose we are given two such sequences ΠA and ΠB ,
each with J joints, and N frames. Further, let xis ∈R3 and yjt ∈R3 correspond to the
body-joint coordinates of ΠA and ΠB , respectively. We define our sequence compati-
bility kernel (SCK) between ΠA and ΠB as1:

KS(ΠA, ΠB) =
1

Λ

∑
(i,s)∈J

∑
(j,t)∈J

Gσ1
(i−j)

(
β1Gσ2

(xis − yjt) + β2Gσ3
(
s− t
N

)
)r
,

(5)

1We assume that all sequences have N frames for simplification of presentation. Our formu-
lations are equally applicable to sequences of arbitrary lengths e.g., M and N . Therefore, we
apply in practice Gσ3(

s
M
− t

N
) in Equation (5).
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where Λ is a normalization constant and J = IJ ×IN . As is clear, this kernel involves
three different compatibility subkernels, namely (i)Gσ1

, that captures the compatibility
between joint-types i and j, (ii)Gσ2 , capturing the compatibility between joint locations
x and y, and (iii)Gσ3 , measuring the temporal alignment of two poses in the sequences.
We also introduce weighting factors β1, β2 ≥ 0 that adjusts the importance of the body-
joint compatibility against the temporal alignment, where β1 + β2 = 1. Figures 1a and
1b illustrate how this kernel works. It might come as a surprise, why we need the kernel
Gσ1

. Note that our skeletons may be noisy and there is a possibility that some of the
keypoints are detected incorrectly (for example, elbows and wrists). Thus, this kernel
allows incorporating some degree of uncertainty to the alignment of such joints. To
simplify our formulations, in this paper, we will assume that such errors are absent from
our skeletons, and thus Gσ1

(i− j) = δ(i− j). Further, the standard deviations σ2 and
σ3 control the joint-coordinate selectivity and temporal shift-invariance respectively.
That is, for σ3 → 0, two sequences will have to match perfectly in the temporal sense.
For σ3 → ∞, the algorithm is invariant to any permutations of the frames. As will be
clear in the sequel, the parameter r determines the order statistics of the kernel (we use
r = 3).

Next, we present linearization of our kernel using the method proposed in Sec-
tion 3.2 and Equation (3) so that kernel Gσ2(x − y) ≈ φ(x)Tφ(y) (see note2) while
Gσ3(

s−t
N ) ≈ z(s/N)T z(t/N). With these approximations and simplification toGσ1 we

described above, we can rewrite our sequence compatibility kernel as:

KS(ΠA, ΠB) =
1

Λ

∑
i∈IJ

∑
s∈IN

∑
t∈IN

[√β1 φ(xis), (see note2)√
β2 z(s/N)

]T
·

[√
β1φ(yit)√
β2z(t/N)

]r

(6)

=
1

Λ

∑
i∈IJ

∑
s∈IN

∑
t∈IN

〈
↑⊗r

[√
β1 φ(xis)√
β2 z(s/N)

]
, ↑⊗r

[√
β1φ(yit)√
β2z(t/N)

]〉
(7)

=
∑
i∈IJ

〈
1√
Λ

∑
s∈IN

↑⊗r

[√
β1 φ(xis)√
β2z(s/N)

]
,

1√
Λ

∑
t∈IN

↑⊗r

[√
β1φ(yit)√
β2z(t/N)

]〉
.

(8)

As is clear, (8) expresses KS(ΠA, ΠB) as a sum of inner-products on third-order
tensors (r = 3). This is illustrated by Figure 1c. While, using the dot-product as the
inner-product is a possibility, there are much richer alternatives for tensors of order
r >= 2 that can exploit their structure or manipulate higher-order statistics inherent in
them, thus leading to better representations. An example of such a commonly encoun-
tered property is the so-called burstiness [36], which is the property that a given feature
appears more often in a sequence than a statistically independent model would predict.

2In practice, we use G
′
σ2(x−y)=Gσ2(x

(x)−y(x))+Gσ2(x(y)−y(y))+Gσ2(x(z)−y(z)) so
the kernel G

′
σ2(x−y) ≈ [φ(x(x));φ(x(y));φ(x(z))]T[φ(y(x));φ(y(y));φ(y(z))] but for simplicity

we write Gσ2(x−y)≈ φ(x)Tφ(y). Note that (x), (y), (z) are the spatial xyz-components of
joints.
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A robust sequence representation should be invariant to the length of actions e.g., a pro-
longed hand waving represents the same action as a short hand wave. The same is true
for short versus repeated head nodding. Eigenvalue Power Normalization (EPN) [32] is
known to suppress burstiness. It acts on higher-order statistics illustrated in Figure 1c.
Incorporating EPN, we generalize (8) as:

K∗S(ΠA, ΠB)=
∑
i∈IJ

〈
G
(

1√
Λ

∑
s∈IN

↑⊗r

[√
β1φ(xis)√
β2z(s/N)

])
,G
(

1√
Λ

∑
t∈IN

↑⊗r

[√
β1φ(yit)√
β2z(t/N)

])〉
,

(9)

where the operator G performs EPN by applying power normalization to the spec-
trum of the third-order tensor (by taking the higher-order SVD). Note that in general
K∗S(ΠA, ΠB) 6≈KS(ΠA, ΠB) as G is intended to manipulate the spectrum of X . The
final representation, for instance for a sequence ΠA, takes the following form:

Vi=G(X i), where X i=
1√
Λ

∑
s∈IN

↑⊗r

[√
β1 φ(xis)√
β2z(s/N)

]
. (10)

We can further replace the summation over the body-joint indexes in (9) by concatenat-
ing Vi in (10) along the fourth tensor mode, thus defining V =

[
Vi

]⊕4

i∈IJ
. Suppose VA

and VB are the corresponding fourth order tensors for ΠA and ΠB respectively. Then,
we obtain:

K∗S(ΠA, ΠB) = 〈VA,VB〉 . (11)

Note that the tensors X have the following properties: (i) super-symmetry X i,j,k=
X π(i,j,k) for indexes i, j, k and their permutation given by π, ∀π, and (ii) positive
semi-definiteness of every slice, that is, X :,:,s ∈Sd+, for s∈Id. Therefore, we need to
use only the upper-simplex of the tensor which consists of

(
d+r−1
r

)
coefficients (which

is the total size of our final representation) rather than dr, where d is the side-dimension
of X i.e., d = 3Z2+Z3 (see note2), and Z2 and Z3 are the numbers of pivots used
in the approximation of Gσ2 (see note2) and Gσ3 respectively. As we want to preserve
the above listed properties in tensors V , we employ slice-wise EPN which is induced
by the Power-Euclidean distance and involves rising matrices to a power γ. Finally, we
re-stack these slices along the third mode as:

G(X)=[X γ
:,:,s]

⊕3

s∈Id , for 0< γ≤1. (12)

This G(X) forms our tensor representation for the action sequence.

4.3 Dynamics Compatibility Kernel

The SCK kernel that we described above captures the inter-sequence alignment, while
the intra-sequence spatio-temporal dynamics is lost. In order to capture these temporal
dynamics, we propose a novel dynamics compatibility kernel (DCK). To this end, we
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Fig. 2: Figure 2a shows that kernel Gσ′2 in DCK captures spatio-temporal dynamics by measur-
ing displacement vectors from any given body-joint to remaining joints spatially- and temporally-
wise (i.e. see dashed lines). Figure 2b shows that comparisons performed byGσ′2 for any selected
two joints are performed all-against-all temporally-wise which is computationally expensive. Fig-
ure 2c shows the encoding steps in the proposed linearization which overcome this burden.

use the absolute coordinates of the joints in our kernel. Using the notations from the
earlier section, for two action sequences ΠA and ΠB , we define this kernel as:

KD(ΠA, ΠB) =
1

Λ

∑
(i,s)∈J,
(i′,s′)∈J,
i′6=i,s′6=s

∑
(j,t)∈J,
(j′,t′)∈J ,
j′6=j,t′6=t

G′σ′1(i−j, i
′−j′)Gσ′2 ((xis−xi′s′)−(yjt−yj′t′)) ·

·G′σ′3(
s−t
N

,
s′−t′

N
)G′σ′4(s−s

′, t−t′), (13)

where G′σ(α,β) = Gσ(α)Gσ(β). In comparison to the SCK kernel in (5), the DCK
kernel uses the intra-sequence joint differences, thus capturing the dynamics. This dy-
namics is then compared to those in the other sequences. Figures 2a-2c depict schemat-
ically how this kernel captures co-occurrences. As in SCK, the first kernel G′σ′1 is
used to capture sensor uncertainty in body-keypoint detection, and is assumed to be
a delta function in this paper. The second kernel Gσ′2 models the spatio-temporal co-
occurrences of the body-joints. Temporal alignment kernels expressed as Gσ′3 encode
the temporal start and end-points from (s, s′) and (t, t′). Finally,Gσ′4 limits contributions
of dynamics between temporal points if they are distant from each other, i.e. if s′�s or
t′� t and σ′4 is small. Furthermore, similar to SCK, the standard deviations σ′2 and σ′3
control the selectivity over spatio-temporal dynamics of body-joints and their temporal
shift-invariance for the start and end points, respectively.. As discussed for SCK, the
practical extensions described by the footnotes1,2 apply to DCK as well.

As in the previous section, we employ linearization to this kernel. Following the
derivations described above, it can be shown that the linearized kernel has the following
form (see [37] or supplementary material for details):

KD(ΠA, ΠB) =
∑
i∈IJ,
i′∈IJ:
i′6=i

〈
1√
Λ

∑
s∈IN,
s′∈IN:
s′6=s

Gσ′4(s−s
′)
(
φ(xis−xi′s′)·z

( s
N

)T)↑⊗ z
( s′
N

)
, (14)

1√
Λ

∑
t∈IN,
t′∈IN:
t′6=t

Gσ′4(t−t
′)
(
φ(yit−yi′t′)·z

( t
N

)T)↑⊗ z
( t′
N

)〉
.
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Equation (14) expresses KD(ΠA, ΠB) as a sum over inner-products on third-order
non-symmetric tensors of third-order (c.f. Section 4.2 where the proposed kernel re-
sults in an inner-product between super-symmetric tensors). However, we can decom-
pose each of these tensors with a variant of EPN which involves Higher Order Singular
Value Decomposition (HOSVD) into factors stored in the so-called core tensor and
equalize the contributions of these factors. Intuitively, this would prevent bursts in the
statistically captured spatio-temporal co-occurrence dynamics of actions. For example,
consider that a long hand wave versus a short one yield different temporal statistics,
that is, the prolonged action results in bursts. However, the representation for action
recognition should be invariant to such cases. As in the previous section, we introduce
a non-linear operator G into equation (14) which will handle this. Our final representa-
tion, for example, for sequence ΠA can be expressed as:

Vii′=G(X ii′), and X ii′=
1√
Λ

∑
s∈IN,
s′∈IN:
s′6=s

Gσ′4(s−s
′)
(
φ(xis−xi′s′)·z

( s
N

)T)↑⊗ z
( s′
N

)
, (15)

where the summation over the pairs of body-joint indexes in (14) becomes equivalent
to the concatenation of Vii′ from (15) along the fourth mode such that we obtain tensor
representations

[
Vii′
]⊕4

i>i′: i,i′∈IJ
for sequence ΠA and

[
V̄ii′
]⊕4

i>i′: i,i′∈IJ
for sequence

ΠB . The dot-product can be now applied between these representations for comparing
them. For the operator G, we choose HOSVD-based tensor whitening as proposed in
[32]. However, they work with the super-symmetric tensors, such as the one we pro-
posed in Section 4.2. We work with a general non-symmetric case in (15) and use the
following operator G:

(E;A1, ...,Ar) = HOSVD(X ) (16)

Ê = Sgn(E) |E|γ (17)

V̂ = ((Ê ⊗1A1) ...)⊗rAr (18)

G(X ) = Sgn(V̂) |V̂ |γ
∗

(19)

In the above equations, we distinguish the core tensor E and its power normalized vari-
ants Ê with factors that are being evened out by rising to the power 0<γ≤1, eigenvalue
matrices A1, ...,Ar and operation ⊗r which represents a so-called tensor-product in
mode r. We refer the reader to paper [32] for the detailed description of the above steps.

5 Computational Complexity

Non-linearized SCK with kernel SVM has complexityO(JN2T ρ) given J body joints,
N frames per sequence, T sequences, and 2 < ρ < 3 which concerns complexity of
kernel SVM. Linearized SCK with linear SVM takes O(JNTZr∗) for a total of Z∗
pivots and tensor order r = 3. Note that N2T ρ� NTZr∗ . For N = 50 and Z∗ = 20,
this is 3.5× (or 32×) faster than the exact kernel for T = 557 (or T = 5000) used in
our experiments. Non-linearized DCK with kernel SVM has complexity O(J2N4T ρ)
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while linearized DCK takes O(J2N2TZ3) for Z pivots per kernel, e.g. Z =Z2 =Z3

given Gσ′2 and Gσ′3 . As N4T ρ�N2TZ3, the linearization is 11000× faster than the
exact kernel, for say Z=5. Note that EPN incurs negligible cost (see [37] for details).

6 Experiments

In this section, we present experiments using our models on three benchmark 3D skele-
ton based action recognition datasets, namely (i) the UTKinect-Action [9], (ii) Florence3D-
Action [10], and (iii) MSR-Action3D [11]. We also present experiments evaluating
the influence of the choice of various hyper-parameters, such as the number of pivots
Z used for linearizing the body-joint and temporal kernels, the impact of Eigenvalue
Power Normalization, and factor equalization.

6.1 Datasets

UTKinect-Action [9] dataset consists of 10 actions performed twice by 10 different
subjects, and has 199 action sequences. The dataset provides 3D coordinate annotations
of 20 body-joints for every frame. The dataset was captured with a stationary Kinect
sensor and contains significant viewpoint and intra-class variations.
Florence3D-Action [10] dataset consists of 9 actions performed two to three times by
10 different subjects. It comprises 215 action sequences. 3D coordinate annotations
of 15 body-joints are provided for every frame. This dataset was also captured with a
Kinect sensor and contains significant intra-class variations i.e., the same action may
be articulated with the left or right hand. Moreover, some actions such as drinking,
performing a phone call, etc., can be visually ambiguous.
MSR-Action3D [11] dataset is comprised from 20 actions performed two to three times
by 10 different subjects. Overall, it consists of 557 action sequences. 3D coordinates of
20 body-joints are provided. This dataset was captured using a Kinect-like depth sensor.
It exhibits strong inter-class similarity.

In all experiments we follow the standard protocols for these datasets. We use the
cross-subject test setting, in which half of the subjects are used for training and the re-
maining half for testing. Similarly, we divide the training set into two halves for purpose
of training-validation. Additionally, we use two protocols for MSR-Action3D accord-
ing to approaches [17] and [11], where the latter protocol uses three subsets grouping
related actions together.

6.2 Experimental Setup

For the sequence compatibility kernel, we first normalized all body-keypoints with re-
spect to the hip joints across frames, as indicated in Section 4.2. Moreover, lengths of
all body-parts are normalized with respect to a reference skeleton. This setup follows
the pre-processing suggested in [4]. For our dynamics compatibility kernel, we use un-
normalized body-joints and assume that the displacements of body-joint coordinates
across frames capture their temporal evolution implicitly.
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Fig. 3: Figure 3a illustrates the classification accuracy on Florence3d-Action for the sequence
compatibility kernel when varying radii σ2 (body-joints subkernel) and σ3 (temporal subkernel).
Figure 3b evaluates behavior of SCK w.r.t. the number of pivots Z2 and Z3. Figure 3c demon-
strates effectiveness of our slice-wise Eigenvalue Power Normalization in tackling burstiness by
varying parameter γ.

Sequence compatibility kernel. In this section, we first present experiments evaluating
the influence of parameters σ2 and σ3 of kernels Gσ2

and Gσ3
which control the degree

of selectivity for the 3D body-joints and temporal shift invariance, respectively. See
Section 4.2 for a full definition of these parameters.

Furthermore, recall that the kernels Gσ2
and Gσ3

are approximated via lineariza-
tions according to equations (1) and (3). The quality of these approximations and the
size of our final tensor representations depend on the number of pivots Z2 and Z3 cho-
sen. In our experiments, the pivots ζ are spaced uniformly within interval [−1; 1] and
[0; 1] for kernels Gσ2 and Gσ3 respectively.

Figures 3a and 3b present the results of this experiment on the Florence3D-Action
dataset – these are the results presented on the test set as we have also observed exactly
the same trends on the validation set.

Figure 3a shows that the body-joint compatibility subkernel Gσ2
requires a choice

of σ2 which is not too strict as the specific body-joints (e.g., elbow) would be expected
to repeat across sequences in the exactly same position. On the one hand, very small σ2
leads to poor generalization. On the other hand, very large σ2 allows big displacements
of the corresponding body-joints between sequences which results in poor discrimina-
tive power of this kernel. Furthermore, Figure 3a demonstrates that the range of σ3 for
the temporal subkernel for which we obtain very good performance is large, however,
as σ3 becomes very small or very large, extreme temporal selectivity or full temporal
invariance, respectively, result in a loss of performance. For instance, σ3 =4 results in
91% accuracy only.

In Figure 3b, we show the performance of our SCK kernel with respect to the num-
ber of pivots used for linearization. For the body-joint compatibility subkernel Gσ2

, we
see that Z2 = 5 pivots are sufficient to obtain good performance of 92.98% accuracy.
We have observed that this is consistent with the results on the validation set. Using
more pivots, say Z2 = 20, deteriorates the results slightly, suggesting overfitting. We
make similar observations for the temporal subkernel Gσ3

which demonstrates good
performance for as few as Z3 = 2 pivots. Such a small number of pivots suggests that
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Fig. 4: Figure 4a enumerates the body-joints in the Florence3D-Action dataset. The table below
lists subsets A-I of the body-joints used to build representations evaluated in Figure 4b, which
demonstrates the performance of our dynamics compatibility kernel w.r.t. these subsets. Figure
4c demonstrates effectiveness of equalizing the factors in non-symmetric tensor representation
by HOSVD Eigenvalue Power Normalization by varying γ.

linearizing 1D variables and generating higher-order co-occurrences, as described in
Section 4.2, is a simple, robust, and effective linearization strategy.

Further, Figure 3c demonstrates the effectiveness of our slice-wise Eigenvalue Power
Normalization (EPN) described in Equation (12). When γ = 1, the EPN functionality
is absent. This results in a drop of performance from 92.98% to 88.7% accuracy. This
demonstrates that statistically unpredictable bursts of actions described by the body-
joints, such as long versus short hand waving, are indeed undesirable. It is clear that in
such cases, EPN is very effective, as in practice it considers correlated bursts, e.g. co-
occurring hand wave and associated with it elbow and neck motion. For more details
behind this concept, see [32]. For our further experiments, we choose σ2=0.6, σ3=0.5,
Z2=5, Z3=6, and γ=0.36, as dictated by cross-validation.
Dynamics compatibility kernel. In this section, we evaluate the influence of choos-
ing parameters for the DCK kernel. Our experiments are based on the Florence3D-
Action dataset. We present the scores on the test set as the results on the validation
set match these closely. As this kernel considers all spatio-temporal co-occurrences of
body-joints, we first evaluate the impact of the joint subsets we select for generating
this representation as not all body-joints need to be used for describing actions.

Figure 4a enumerates the body-joints that describe every 3D human skeleton on
the Florence3D-Action dataset whilst the table underneath lists the proposed body-joint
subsets A-I which we use for computations of DCK. In Figure 4b, we plot the perfor-
mance of our DCK kernel for each subset. The plot shows that using two body-joints
associated with the hands from Configuration-A in the DCK kernel construction, we at-
tain 88.32% accuracy which highlights the informativeness of temporal dynamics. For
Configuration-D, which includes six body-joints such as the knees, elbows and hands,
our performance reaches 93.03%. This suggests that some not-selected for this config-
uration body-joints may be noisy and therefore detrimental to classification.

As configuration Configuration-E includes eight body-joints such as the feet, knees,
elbows and hands, we choose it for our further experiments as it represents a rea-
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sonable trade-off between performance and size of representations. This configura-
tion scores 92.77% accuracy. We see that if we utilize all the body-joints according to
Configuration-I, performance of 91.65% accuracy is still somewhat lower compared to
93.03% accuracy for Configuration-D highlighting again the issue of noisy body-joints.

In Figure 4c, we show the performance of our DCK kernel when HOSVD factors
underlying our non-symmetric tensors are equalized by varying the EPN parameter γ.
For γ=1, HOSVD EPN is absent which leads to 90.49% accuracy only. For the optimal
value of γ=0.85, the accuracy rises to 92.77%. This again demonstrates the presence
of the burstiness effect in temporal representations.

Comparison to the state of the art. In this section, we compare the performance of
our representations against the best performing methods on the three datasets. Along
with comparing SCK and DCK, we will also explore the complementarity of these
representations in capturing the action dynamics by combining them.

On the Florence3D-Action dataset, we present our best results in Table 1a. Note that
the model parameters for the evaluation was selected by cross-validation. Linearizing a
sequence compatibility kernel using these parameters resulted in a tensor representation
of size 26, 565 dimensions3, and producing an accuracy of 92.98% accuracy. As for the
dynamics compatibility kernel (DCK), our model selected Configuration-E (described
in Figure 4a) resulting in a representation of dimensionality 16, 920 and achieved a per-
formance of 92%. However, somewhat better results were attained by Configuration-D,
namely 92.27% accuracy for size of 9, 450. Combining both SCK representation with
DCK in Configuration-E results in an accuracy of 95.23%. This constitutes a 4.5% im-
provement over the state of the art on this dataset as listed in Table 1a and demonstrates
the complementary nature of SCK and DCK. To the best of our knowledge, this is the
highest performance attained on this dataset.

Action recognition results on the UTKinect-Action dataset are presented in Table
1b. For our experiments on this dataset, we kept all the parameters the same as those
we used on the Florence3D dataset (described above). On this dataset, both SCK and
DCK representations yield 96.08% and 97.5% accuracy, respectively. Combining SCK
and DCK yields 98.2% accuracy outperforming marginally a more complex approach
described in [4] which uses Lie group algebra on SE(3) matrix descriptors and requires

3Note that this is the length of a vector per sequence after unfolding our tensor representation
and removing duplicate coefficients from the symmetries in the tensor.

SCK DCK SCK+DCK
accuracy 92.98% 93.03% 92.77% 95.23%

size 26,565 9,450 16,920 43,485

Bag-of-Poses 82.00% [10] SE(3) 90.88% [4]

(a)

SCK DCK SCK+DCK
accuracy 96.08% 97.5% 98.2%

size 40,480 16,920 57,400

3D joints. hist. 90.92% [9] SE(3) 97.08% [4]

(b)

Table 1: Evaluations of SCK and DCK and comparisons to the state-of-the-art results on 1a the
Florence3D-Action and 1b UTKinect-Action dataset.
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practical extensions such as discrete time warping and Fourier temporal pyramids for
attaining this performance, which we avoid completely.

In Table 2, we present our results on the MSR-Action3D dataset. Again, we kept all
the model parameters the same as those used on the Florence3D dataset. Conforming
to prior literature, we use two evaluation protocols on this dataset, namely (i) the pro-
tocol described in actionlets [17], for which the authors utilize the entire dataset with
its 20 classes during the training and evaluation, and (ii) approach of [11], for which
the authors divide the data into three subsets and report the average in classification
accuracy over these subsets. The SCK representation results in the state-of-the-art ac-
curacy of 90.72% and 93.52% for the two evaluation protocols, respectively. Combining
SCK with DCK outperforms other approaches listed in the table and yields 91.45% and
93.96% accuracy for the two protocols, respectively.

Processing Time. For SCK and DCK, processing a single sequence with unoptimized
MATLAB code on a single core i5 takes 0.2s and 1.2s, respectively. Training on full
MSR Action3D with the SCK and DCK takes about 13 min. In comparison, extract-
ing SE(3) features [4] takes 5.3s per sequence, processing on the full MSR Action3D
dataset takes∼ 50 min. and with post-processing (time warping, Fourier pyramids, etc.)
it goes to about 72 min. Therefore, SCK and DCK is about 5.4× faster.

7 Conclusions

We have presented two kernel-based tensor representations for action recognition from
3D skeletons, namely the sequence compatibility kernel (SCK) and dynamics com-
patibility kernel (DCK). SCK captures the higher-order correlations between 3D co-
ordinates of the body-joints and their temporal variations, and factors out the need
for expensive operations such as Fourier temporal pyramid matching or dynamic time
warping, commonly used for generating sequence-level action representations. Further,
our DCK kernel captures the action dynamics by modeling the spatio-temporal co-
occurrences of the body-joints. This tensor representation also factors out the temporal
variable, whose length depends on each sequence. Our experiments substantiate the ef-
fectiveness of our representations, demonstrating state-of-the-art performance on three
challenging action recognition datasets.
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SCK DCK SCK+DCK
acc., prot. [17] 90.72% 86.30% 91.45%
acc., prot. [11] 93.52% 91.71% 93.96%

size 40,480 16,920 57,400

accuracy, protocol [17] accuracy, protocol [11]
Actionlets 88.20% [17] R. Forests 90.90% [38]
SE(3) 89.48% [4] SE(3) 92.46% [4]

Kin. desc. 91.07% [39]
Table 2: Results on SCK and DCK and comparisons to the state of the art on MSR-Action3D.
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